Suggested solution of HW2

Chapter 3 Q12: By Residue formula, for any N > |u|
iyg ﬁcoth Qs — Z Res(ﬂmth,n)+Res<7r00tﬂz,—u>.
271 o v O 2= B ) (ut2)
At z =n,

— sinmz

dz

=m(—1)".

n

Thus,

Res mTcotmz n) — 1
(u+2)2" )  (u+n)?

Also, direct checking yield

T cot mz 72
Res ( —u) =

(u+2)2’ Csin?u

On the other hand, on the circle |z| = N + 1/2, write 7z = x + iy, fix a small § > 0.
If |z| > §, we have

cos? x + sinh? Y - 1 + sinh? y

|cot mz]? = — —5— < —s— < C1.
sin“x 4+ sinh“y = C +sinh®y
If |z] <6,
2 12 12
|cotmz|? = C?S2m+s,mh2y < 1—}—.51r;h Y <o
sin“ z 4 sinh” y sinh® y
Thus,

1 t
—55 M dz—0 as N — oo
270 Jlo=ns1y2 (Ut 2)

which yield the desired result.

Chapter 4 Q1: (a) if £ € R,
Q) = Bl = [ flo)e et o
R
(b) We first claim that A(z) is differentiable at zo € H. For z = x + iy, y > 0,

t o)
A(Z) — 1 f(é—)e—QTri(x-Hy)(f—t)dé‘ — /0 f(é-)eZ‘m(l—&-zg)édé-

+o0 )
_ / f(g)e%rzzef??rygdg'
0

Since f is of moderate decrease, and y > 0, A(z) define a holomorphic function
on H. And

oo —27myé e A —27yé A



Thus, A(z) is a bounded holomorphic function. Similar for B(z). By Morera’s
Theorem, F(z) is a bounded entire function, and thus is constant. By above

inequality, F'(z) = 0.

(c) Putting z = 0, we have for each ¢ € R

/_; F(z) dz = 0.

By continuity, f = 0.

Chapter 4 Q2: If f is analytic in S,, obviously f(™ is analytic in S, for any 0 < b < a. It remains to
show that there exists B, > 0 such that

n y Bn
1F™ (z +iy)| < T for all z € R and |y| <b.

Let d =a—0b, w € Sp. By Cauchy formula,

|1l e,
n! 27 (JB(w,s) (7 —w)mtt
2m 6
< L [,
2 0 5”
1 [ A

<

= 2@ /0 1+ [Re(w + (5ei9)}2d9
If |Re(w)| > 24,

AW A 1A a1
n! 6" 1—-02+4[Re(w)]?/2 ~ 6" 1+ (Re(w))?/4 — 6 1+ (Re(w))?’

If |[Re(w)| < 26,

’ﬂww
|

A 1+ 442
n om

\S T+ (Re(w))?

| 2
Choose B,, = w

Chapter 4 Q3: If £ < 0, let v be the curve composed of the upper semi circle of radius R from R to
—R and the straight line from —R to R on the real axis. For R sufficiently large, by

Residue formula, one can obtain

i% a o—2mizE g, _ l-e27r§a.
2mi [, a? + 22 21

On the other hand,

R T
_ a —2mixg a —27iRE(cos 6+1isin O
Preva= [ Hoertas [ ot ) df
9



Chapter 4 Q6:

Chapter 4 QT:

And

" a —2mi RE(cos O+i sin 0) /7r a 27 RE sin 0
———€ do| < ——e dg — 0 as R — oo.
/0 a2 + R2¢2i0 =y R2—a?

Result follows when we take R tends to +oo. If £ > 0, instead we consider the curve
composed of lower semi cirle from —R to R and the straight line from R to —R. And
then argue as same as before.

The inversion can be checked by direct integration.

+oo . 1 0 . 1
/ 6727ra\£\e27rz§zd€ _ and / 6727ra\§\e27r7,§zd€ _
0 27(a — ix) oo 27(a + ix)

Summing up yield the result.

a
Follows from applying Poisson summation formula to f = PR and the result in
a*+x
Q3.
00 0o 0 00
Z 6727”1‘”' — Z 6727ran + Z eQTran =14 22 6727“”7'
n=—o0 n=1 n=-—o0 n=1
1 + 6727\'(1
= m = cothma.

(a) If £ < 0, using contour integral as in the first part of Q3, as the pole is in the

lower half plane, we get

R T
; 1 . 1 ) .
0= —27iz€ dz = / —2mixé d / i —2mi§ R(cos 6+ sin 0) do.
éf(z)e : R (:E-i-T)ke T 0 (T—I—Rew)ke

while

r

Thus, f(¢) =0if £ <O0.

1 —27i€ R(cos 0-+i sin 0) /7r 1 2mig sin 0
; e X2 COS 781n do < e 7T'L§ sin d0 — 0'
(T 4 Rei0)k ~Jo (R—|7])*

If € > 0, using the contour as in the latter part of Q3. we have

1 1

R = p2mizg dz = Res_ —2miz€ )
2mi J, (z-i-T)""‘e : es—r(f(z)e )

At z = —7,
dF1 —omize k=1 2miTe
dzk—le . ) = (—2mi&)" e .
Thus,
_ ie\k—1 ,2miTE
—2miz€ _( 2mi§)" e
Res_.(f(z)e )= =1
in which

(z+T)k (k—1)!

) _ Nk ck—1 2miTE
¢ 1 67277225 dz = ( 27”) g €
~



Chapter 5 Q2:

()

But

¢ 1 —2miz€ d /_R 1 —27ix€ dx + O( L )
— € z = — € X - ).
S (z+1)k r (z+T7)k Rk

Takeing R — oo yields

i (_2 .)k - TiET
f©) = G teme

Then we apply Poisson summation formula to get the desired equality.
Putting k = 2, then
o0

1 > )
Z (7_ ~ n)g — 472 Z me2™imT

n=-—oo m=1

Using the equality

ad z
— (1-2)

2miT

Since Im(7) > 0, we can substitute z = e into the above equation. Thus,

& ) e2mit 2
—47T2 Z m627rzm‘r — _4772 : = — )
(1 —e2m7)2  sin®(7r7)

m=1

2 o)
1
Yes. Since both ﬂi and Z ———5 define a meromorphic function on
e R

sin?(7z

C with pole at integers, and equal in value on the upper half plane. By identity

theorem, they are equal.

For sake of completeness, I prove the identity theorem for meromorphic function
here. It suffices to prove that they are equal on any compact set 2 C C. If f and
g are two meromorphic functions on Q such that f(z) = g(z) on a nonempty open
region U. As poles are isolated, there exists holomorphic function fi, f2, 91,92

on interior of € such that

fi 91 .
==, z) == onint(Q).

T 9(2) 7 )
Define h = f192 — f2g1 which is holomorphic on int(2). h =0 on U. By identity
theorem, h = 0 on Q. Thus, f =g on Q.

f(2)

Let p(z) be a polynomial of degree m. There exists a constant C' > 0 such that
Ip(2)] < C(J=" +1)

Ve > 0, there exists A, > 0 such that
2™ < Acexp(|2)

Thus, p(z) is of order less than or equal to ¢, for any € > 0. So, it is of order 0.



Chapter 5 Q3:

Chapter 5 Q6:

Chapter 5 QT:

(b) If z = |z]e®, b = |ble??,

n n n
02" = el=I" bl eos(n+9) < cl=I" bl

So it is of order less than or equal to n. Put z = z € R to see that the order is

exactly n.

(¢) Put z =2 € R. Since for any s € R, there exists R > 0 s.t. €* > z° for all x > R.

The function e¢” has infinity order of growth.

. 2 .
E et T 6271'2712

neN

< § e*ﬂ'n-lm(n7+2z)
neN

2
< § e~ -Im(T) | 627r|nHz\
neN

< e2rlel’ Z e~ Im(r)/2 (using AM-GM inequality)
neN

< Ce27r\z\2

for some constant C' depends on 7 only. Thus it is of order < 2. It remains to show

that the order is exactly 2. For each r and m € N, we have
O(r +mrlr) = e~ TTTHMITG (| 1),

Thus,
1O(r + m7|7)| = ™™ |0(r|7)|.

Choose r such that Right hand side is non-zero. Thus the growth of order is at least
2.

Using the product formula for the sine function. Putting z = 1/2, we get

R 1  (2n+1)2n—1
7rn1;[1(14712)n1;[1( (2)71()2 .

(a) Clearly, a,, # —1 for all n € N, otherwise the conclusion fail. Since |a,| — 0, we
may assume |a,| < 1/2 for all n € N. Hence, log(1 + ay,) is well defined if we
choose the principle branch. By the power series expansion of log, we know that
for all |z| < 1/2,

log(1 + z) — 2| < C|z|*.

Therefore, for any m >n > 1,
m m m
D log(l+ar) = Y ar| <CD Jaxl?
k=n k=n k=n

The conclusion follows immediately from cauchy criterion.

(b) Take a,, = e™™/* will suffices.



(c) Take a sequence a,, which contains a constant subsequence a,, = —1.

Chapter 5 Q8: The product converge since

N . .
H z smz[, z}*1_>smz N o
oS — = sin — as 0.
P 2k 2N 2N z

Chapter 5 Q9:
N

[Ta+=0-2=0+

k=0

N+1
2277 ) =1 as N — oo.

Extra question: Consider the contour suggested. Choose the log using Principle branch and use

Residue theorem, we obtain

On 4,

ya—1 R e(a—l)log(t+i5) R ta—1
|t | St | Tt asioo
w1tz . 1+t+1i e 1+t

Similarly,

sa—1 R ela—1)log(t—id)
[t | S
Ny L+ 2 . 1+t—1d

R ,(a—1)log (t+id)

1+t+1i0
- R (a—1)log(t+id) ) R ra—1
— e(a—1)27rz / ejdt N e(a—l)QlTr / dt as — 0.
€ 1 + t + 15 € 1 + t

Therefore,

sa—1 R ta—1
/ dz = / dt | (1 —ela=12m)
S e 1+t

while when R — oo and € — 0,

Zafl , 1
dz| <CR-R*"* - —— =0
b Ltz 1+R
and
a—1 1
/ i dz| < Ce-e* 1. —0
v 142 1—¢€
Hence,
/oo to—1 it — 27.‘.2'61'71'((1—1) B T
o L1+t (1—ela=D27é)  gin(ra)’



